Công thức tổ hợp, chỉnh hợp, hoán vị và công thức nhị thức niu tơn

Note :Bức ảnh bên trên thể hiện rất rõ ràng về chủ đề Công thức tổ hợp, chỉnh hợp, hoán vị và công thức nhị thức niu tơn, nội dung bài viết vẫn đang tiếp tục được các phóng viên cập nhật . Hãy quay lại trang web hàng ngày để đón đọc nhé !!!

Trang chủ » Công thức tổ hợp, chỉnh hợp, hoán vị và công thức nhị thức niu tơn

Công thức tổ hợp chỉnh hợp hoán vị: Công thức tổ hợp, công thức chỉnh hợp, công thức hoán vị, công thức giai thừa và cách tính…

a) Định nghĩa Với mọi số tự nhiên dương, tích được gọi là – giai thừa và kí hiệu . Vậy .

Ta quy ước .

b) Tính chất .

a) Định nghĩa Cho tập gồm phần tử (). Khi sắp xếp phần tử này theo một thứ tự ta được một hoán vị các phần tử của tập A.

Kí hiệu số hoán vị của n phần tử là .

b) Số hoán vị của tập n phần tử Định lí: Ta có

a) Định nghĩa Cho tập A gồm n phần tử và số nguyên với . Khi lấy phần tử của A và sắp xếp chúng theo một thứ tự ta được một chỉnh hợp chập của phần tử của A.

b) Số chỉnh hợp Kí hiệu là số chỉnh hợp chập của phần tử

Định lí: Ta có .

a) Định nghĩa Cho tập A có n phần tử và số nguyên k với . Mỗi tập con của A có k phần tử được gọi là một tổ hợp chập k của n phần tử của A.

b) Số tổ hợp Kí hiệu là số tổ hợp chập k của n phần tử.

Định lí:

Ta có: .

c) Tính chất của các số Tính chất 1: với

Tính chất 2: (Công thức Pa-xcan)

với

Ví dụ 1: Sắp xếp 5 người vào một băng ghế có 5 chỗ. Hỏi có bao nhiêu cách.

Hướng dẫn giải: Mỗi cách đổi chỗ 1 trong 5 người trên băng ghế là 1 hoán vị.

Vậy có P5 = 5! = 120 (cách).

Ví dụ 2: Từ tập hợp X= {0; 1; 2; 3; 4; 5} có thể lập được mấy số tự nhiên có 4 chữ số khác nhau.

Hướng dẫn giải: Gọi A= là số cần lập với và a1, a2, a3, a4 phân biệt.

Chữ số nên có 5 cách chọn a1. Chọn 3 trong số 5 chữ số còn lại để sắp xếp vào 3 vị trí có cách. Vậy có 5. = 300 số có thể lập từ tập hợp X.

Ví dụ 3: Có 10 cuố sách toán khác nhau. Chọn ra 4 cuốn hỏi có bao nhiêu cách.

Hướng dẫn giải: Mỗi cách chọn ra 4 trong số 10 cuốn sách là một tổ hợp chập 4 của 10.

Vậy có = 210 (cách chọn).

Ví dụ 4: Có bao nhiêu cách xếp cuốn sách Toán, cuốn sách Lý và cuốn sách Hóa lên một kệ sách sao cho các cuốn sách cùng một môn học thì xếp cạnh nhau, biết các cuốn sách đôi một khác nhau.

Hướng dẫn giải: Ta xếp các cuốn sách cùng một bộ môn thành một nhóm

Trước hết ta xếp 3 nhóm lên kệ sách chúng ta có: cách xếp

Với mỗi cách xếp 3 nhóm đó lên kệ ta có cách hoán vị các cuốn sách Toán, cách hoán vị các cuốn sách Lý và cách hoán vị các cuốn sách Hóa

Vậy theo quy tắc nhân có tất cả: cách xếp

Ví dụ 5: Một nhóm có 5 nam và 3 nữ. Chọn ra 3 người sao cho trong đó có ít nhất 1 nữ. Hỏi có bao nhiêu cách.

Hướng dẫn giải: Trường hợp 1: Chọn 1 nữ và 2 nam. Chọn 1 trong 3 nữ có 3 cách. Chọn 2 trong 5 nam có cách. Suy ra có 3 cách chọn

Trường hợp 2: Chọn 2 nữ và 1 nam. Chọn 2 trong 3 nữ có cách. Chọn 1 trong 5 nam có 5 cách. Suy ra có 5 cách chọn.

Trường hợp 3: chọn cả 3 nữ, có 1 cách.

Vậy có tất cả: 3 + 5 + 1 = 46 (cách). Sotayhoctap chúc các bạn học tốt!

Mình là Nguyễn Mỹ Lệ - là tác giả các bài viết trong chuyên mục sổ tay Toán học - Vật lý - Hóa học. Mong rằng các bài viết của mình được các bạn đón nhận nồng nhiệt.

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Bình luận

Tên *

Email *

Tiếp đó, để mọi nguời hiểu sâu hơn về Công thức tổ hợp, chỉnh hợp, hoán vị và công thức nhị thức niu tơn, mình còn viết thêm một bài viết liên quan tới bài viết này nhằm tổng hợp các kiến thức về công thức ck của n . Mời các bạn cùng thưởng thức !

Lời kết :Công thức tổ hợp chỉnh hợp hoán vị: Công thức tổ hợp, công thức chỉnh hợp, công thức hoán vị, công thức giai thừa và cách tính...